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Abstract: Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method
for the inspection of ferromagnetic materials. This review paper presents the basic principles of
MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage
magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of
defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such
as magnetization strength, testing speed, surface roughness, and stress, have also been introduced.
As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed)
and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the
algorithms for the quantification of defects and the applications of MFL have been introduced.

Keywords: MFL; NDT; sensor; magnetic dipole model; high speed; liftoff; magnetizer; inverse problem;
artificial neural network

1. Introduction

Magnetic flux leakage (MFL) testing is an electromagnetic nondestructive testing
(NDT) method with high efficiency and reliability. It has the ability to detect various types
of defects such as cracks, corrosion, pitting, and cavity, and it is able to detect both surface
and subsurface defects. Therefore, it has been widely used to ensure the integrity and safety
of structures in the petrochemical, energy, manufacturing, and transportation industries.

The principle of MFL testing is based on the interaction between magnetic field and
defects. The MFL testing device usually consists of a magnetizing unit, a sensing unit, a
signal conditioning unit, an analog-to-digital converter (ADC), and a computer with signal
displaying and analyzing software. The magnetizing unit is usually consisting of permanent
magnets of magnetizing coils that are able to magnetize the ferromagnetic specimen into
saturation or near saturation. Due to the abrupt change in magnetic reluctance at the defects,
the magnetic flux leaks into the nearby air. The perturbation of the magnetic field can be
recorded by an array of magnetic field sensors and used to evaluate and quantify defects.

MFL testing theory and technology have been developed for decades. There are
several review papers that summarized some developments in MFL together with other
electromagnetic NDT methods [1-4]. However, there is no comprehensive review of MFL
technology. In the following sections of this paper, a comprehensive review will be given
to the following subjects of MFL technology: (1) the study of the MFL principle and
analytical model; (2) the influence of testing parameters (e.g., magnetizing strength, liftoff,
scanning speed) and defect properties (e.g., defect size and defect orientation) on the MFL
signals; (3) excitation and sensing techniques in MFL testing; (4) inverse problem and defect
quantification in MFL; (5) applications of MFL and comparison with related NDT methods.

2. MFL Principle and Analytical Model
2.1. MFL Principle

The basic principle of MFL testing is schematically shown in Figure 1, where a mag-
netizer is applied to magnetize the ferromagnetic specimen into near saturation. The
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magnetizer can be either a magnet with a ferromagnetic yoke or a magnetizing coil. Due to
the high permeability of ferromagnetic materials, the magnetic flux is constrained in the
material when no defects are presented. In the presence of a defect, the magnetic field leaks
into the nearby air and causes the leakage field.
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Figure 1. Basic principle of MFL testing: (a) yoke-type magnetizer; (b) encircling coil-type magnetizer.

The phenomenon of magnetic field leakage was explained using the refraction of
the magnetic field by Sun and Kang with the boundary conditions of the electromagnetic
field [5], as shown in Figure 2a. At the interface of the two media, the magnetic fields satisfy
the boundary equations; thus, the refracted angle is expressed as:

ay = arctan(& tanay) 1)

M1

where 1 and y; are the permeabilities of medium 1 and 2, respectively.

(b)

Figure 2. The refraction of magnetic field at interface of a defect: (a) schematic representation;
(b) finite element simulation results of magnetic vectors for y; = pp; (c) finite element simulation
results of magnetic vectors for p1 > .

Therefore, if p11 = pp, which is the case where the specimen is non-ferromagnetic, then
a1 = ap. In this case, the flux line continues at the interface without any perturbation, and
there is no leakage magnetic field. If 1 > yy, then a1 > &y, and the magnetic field will enter
the vicinity of the defect due to refraction.

2.2. Forward Problem and Magnetic Dipole Model

The forward problem, which derives the MFL field of a defect with a certain shape, is a
fundamental and important topic in MFL testing. One of the most commonly used models
in the forward problem is the magnetic dipole model, the study of which was pioneered
by Zatsepin and Shcherbinin [6,7]. Based on their study, many researchers have further
derived the distribution of the leakage field generated by a 2D notch and a 3D notch [8,9].
The dipole is assumed to distribute uniformly at the slot surfaces with the density or,. For a
line with infinitesimal length dy on the slot surface shown in Figure 3a, the magnetic charge
is dp = omdy, and in the 3D model shown in Figure 3b, the charge is dp = ondydz. The

magnetic field generated by the magnetic charge is dH = %r. By taking the integral for
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all magnetic charges at slot surfaces, the magnetic field can be derived. For the 2D model
in Figure 3a, the tangential and normal components of the field are:

Om arctan b(x + a) — arctan b(x — a)
Hx(x,y) = nl t (x+a)” +y(y+Db) t (x —a)* +y(y+b) ¥
O [<x+a>2+<y+b>2n<xa>2+y2}>
Ars) = ! <[(x+a)2 Tl - 0P+ (v + b)) K
(@ y ©
) y %Z 7Py

+om -Om

g7

Figure 3. Dipole model for the magnetic field calculation: (a) 2D representation; (b) 3D representation.

N

For the 3D model in Figure 3b, the results are:
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According to Equations (4)—(6), the distribution of magnetic field above a notch can be
calculated. Figure 4 shows the magnetic field distributions at liftoff iy = 1 for defects with
the dimensionsofa=1,b=2,c=10anda=5,b=2,c=5.

The magnetic dipole model was further extended to calculate the magnetic field
generated by defects with various shapes. Uetake studied the MFL of adjacent parallel
surface slots [10]. Dutta and Stanley calculated the MFL of a cylindrical hole and verified the
model by comparing it with simulation results [11,12]. Mandache and Clapham calculated
the MFL of a cylindrical hole, a racetrack defect, and adjacent holes [13]. Lukyanets derived
an analytical model for the MFL of a defect with a smooth surface [14]. Trevino proposed
an improved dipole model to calculate the MFL of conical, ellipsoidal, and tensional shaped
defects [15]. Wu proposed a model for concave and bump shaped defects [16]. Zhang
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derived an analytical expression for internal defects using a modified dipole model and
image theory [17]. Li proposed to improve the accuracy of the dipole model by considering
a two-layer charge distribution model [18].
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Figure 4. Distribution of magnetic field above defects with colors indicating the intensity of magnetic
field: (a) Hy for a rectangular notch; (b) Hy for a rectangular notch; (c) H; for a rectangular notch;
(d) Hx for a square notch; (e) Hy for a square notch; (f) H; for a square notch.

In addition to the commonly used magnetic dipole model, there are also some analyti-
cal models derived for the calculation of the MFL. Bowler derived an analytical solution for
semi-elliptical indentation by solving the Laplace equation of a static magnetic field, and
the results turned to be in agreement with those from the dipole model [19]. Cheng and
Wang proposed a solenoid model based on the magnetization mechanisms of the magnetic
medium, and calculated the V-shaped and Z-shaped defects [20,21]. Huang used a basic
signal analysis approach to predict the MFL response with high accuracy and calculation
speed [22].

3. Factors Influencing MFL Signal

In MFL testing, there are many factors that influence the inspection signal. This section
summarizes some of the important factors such as the defect size, defect orientation, liftoff
distance, magnetization strength, stress, and scanning velocity.

3.1. Defect Dimension and Orientation

The influence of defect size on the MFL signal has been analyzed using analytical
models, simulations, and experiments [8,23-29]. It was suggested by Forster that [8], when
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using the magnetic dipole model to analyze the influence of defect dimension, the magnetic
charge density should also change with defect dimension to obtain more accurate results:

1 b/a+1

UmZEW nl{1a )

where F,) is a non-linear factor and H, is the applied field.

The influence of the defect dimensions can be analyzed using Equations (4)—(7). For
the defect shown in Figure 3b, the magnetic field above the center of the defect (y =1, z =0)
was extracted and the results are shown in Figure 5.
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Figure 5. Influences of defect dimensions on MFL signal: (a) change in Hy with defect width;
(b) change in H, with defect width; (c) change in Hy with defect depth; (d) change in Hy with defect
depth; (e) change in Hy with defect length; (f) change in H, with defect length.

Conventionally, researchers and engineers of MFL have thought that the orientation
defect should be perpendicular to the magnetization field to obtain an effective MFL field.
Sun and Song questioned this traditional conclusion and studied the MFL signals for
defects parallel to the magnetization field [30,31]. They found that it was possible to detect
cracks that are parallel to the magnetization, although the amplitude was small. Wu further
studied the variation of MFL signal amplitude with the angle between the defect and
magnetization field [32], the results are shown in Figure 6.
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Figure 6. Influence of the angle between magnetization and defect on MFL signal.

The scanning direction of the sensors also influences the MFL signal, and Wu also
studied this effect [32]. This effect can also be obtained by extracting the magnetic field along
different directions using Equations (4)—-(6). For a defect with the dimensionsa=1,b =2,
and c = 10, the variation of the MFL signal with scanning direction is shown in Figure 7.
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Figure 7. Influence of scanning angle on MFL signal: (a) change in Hy with scanning angle; (b) change
in Hy with scanning angle.

3.2. Liftoff Effect

The MFL signal is dependent on the liftoff distance between the probe and the speci-
men. The MFL signal reduces as the increase in liftoff distance [33-35], an example of liftoff
effect is shown in Figure 8.
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Figure 8. Influence of liftoff on MFL signal: (a) change in Hy with liftoff; (b) change in H,, with liftoff.
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The change in liftoff during scanning significantly influences the testing signal. Thus,
many researchers have attempted to reduce the liftoff effect. Jia used a filtering method to
suppress liftoff interference [36]; Wu proposed a liftoff tolerant sensor by inserting ferrite
into the sensing coil [37]; Peng introduced an exponential function compensation for liftoff
correction [38]; Wang linearized the liftoff effect by applying Fourier transform [39].

3.3. Magnetization Strength and Material Property

Usually, a strong magnetization is required to saturate the ferromagnetic material
to obtain a good MFL signal. However, the MFL signal does not always increase with
magnetization strength. Many researchers have found that the MFL signal initially increases
with the magnetizing current and starts to decrease after a certain point [40—-42], as shown
in Figure 9. Sun explained this phenomenon with the magnetic compression effect [43],
which states that the large background field caused by strong magnetization suppresses
the leakage of the magnetic field from defects. Later, he proposed a new MFL principle
based on near-zero background magnetic field [44], in which magnetic shielding is used to
collect a strong background field.

A

Amplitude of MFL signal

Magnetizing current
Figure 9. Influence of magnetizing current on MFL signal.

Since the magnetization of the material is also based on the material property, the
MFL signal is also dependent on the B-H curve of the ferromagnetic materials. Katoh
approximated the B-H curve with two lines and studied this influence [45].

3.4. Velocity Effect

In pipeline inspection, the MFL device is propelled by the gas and oil inside the
pipe. The device usually travels several meters per second. Due to the relatively motion
between the magnetizer and the pipe, eddy currents are induced in the pipe wall. The
motion-induced eddy current density is:

J=0cvxB (8)

The eddy currents generate a secondary magnetic field according to the Biot-Savart
law. Thus, the magnetization status of the pipe and corresponding MFL signal will be af-
fected at high testing speeds. The problem is governed by Maxwell’s equations considering
the velocity term:

V?B — yaaa—? —uo(v-V)B=0 )

Many researchers have studied the velocity effect of finite element simulation. For the
yoke-type magnetizer, the eddy currents are induced in the region beneath the poles [46-49],
and the magnetic field is perturbed [50]. A comparison between the distributions of the
eddy current and magnetic field at different speeds is shown in Figure 10.
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Figure 10. Distribution of motion-induced eddy current and magnetic field: (a) eddy current at

0.5 m/s; (b) eddy current at 2 m/s; (c) magnetic field at 0.5 m/s; (d) magnetic field at 2 m/s.

Recently, B. Feng found an analytical solution to Equation (9) and further obtained the
expression of the motion-induced eddy current under a pole of the magnetizer [51]:

h .
Tl = — / k ]kCIH kry +]kDIII Kty _ gy clleky 4 gy pMe—k)|o*rdys  (10)

where [o1q1 is the eddy current in specimen, yy is the liftoff, & is the height of magnetizer,
c C;H, DM and D;H are coefficients that are solved as [51]:

ot _ 2jplko(kr + k)e ky!+k1d sin (ka)
* ek (k1 + k) — e~k (kr — k)*

ot _ 2jplkr(kr — k)eky'=kd sin (ka)
T ek (ki k) — ek (k1 — k)?

m_ 2plk(kr+ k)e ky'+kd gin (ka)
Y ek (k1 + k) — ek (ks — k)?

m_ 2plk(kr — k)e R M sin(ka)
Y ek (k1 + k)* — ek (kr — k)2

With the analytical solution of the MIEC, the tail effect and tilt angle of the MIEC at
different moving speeds are also analyzed [51].

The encircling coil-type magnetizer is more commonly used in the manufacturing line
for the inspection of steel pipes. As the production speed increases, there is also a need
for high-speed testing. For the encircling coil-type magnetizer, the motion-induced eddy
currents are mainly focused on the edge of the magnetizing coil [52-56]. Wu also studied
the distribution of eddy current in circumferential-type MFL testing [57].

The influence of the velocity on the MFL signal has also been extensively studied.
There are changes in both the signal baseline and signal amplitude, and the signal shape is
also distorted [58—61]. The change in MFL signal amplitude with velocity has been reported
in many previous studies, some have reported that the signal amplitude decreases with
the increase in velocity [48,52]. However, further detailed analyzes by Pullen showed that
when there is insufficient flux saturating the specimen, the MFL signal for far-side defects
decreases with scanning speed, while the signal for near-side defects increases with the
speed [62,63]. Zhang further found that the influence of the velocity also depends on the
sensor position [64]. In order to reduce the velocity impact, Usarek studied the change in
the magnetic field with velocity and found that both tangential and normal components of
the magnetic field increase with velocity linearly and used an empirical fitting equation to
compensate for the MFL signal [65].
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Based on the studies of the velocity effect in MFL testing, many researchers have
attempted to use the velocity-induced field for testing. Antipov used an induced tail
magnetic field to test rails at high-speed [66]. B. Feng, T. Rocha, and E Yuan all studied the
motion-induced eddy current testing method and used magnetic field sensors to pick up
the defect signals [51,67-72]. Researchers from Technische Universitdt Ilmenau proposed a
new Lorentz force NDT method for conductive specimens, which is also based on motion-
induced eddy current [73-77].

3.5. Other Effects

In MFL testing, there are also other factors that influence the MFL signal, such as
stress, surface roughness, corrosion coverage, and probe gesture. Kasai studied the MFL
testing signal for samples covered by corrosion (iron oxides) and showed that the MFL
signal decreased with increasing iron oxide ratio [78]. Long studied the influence of gesture
probes on MFL signal and proposed a dual magnetic sensor model to compensate for the
change in probe gesture [79].

The stress effect has been studied by many researchers [80-91]. The properties of
ferromagnetic materials change with the loading stress due to the magneto-mechanical
coupling, thus the MFL signal also changes with the stress. Y. Wang proposed a multi-
physics simulation model to study the change in MFL signal with stress and showed that
the peak-to-peak amplitude of the normalized MFL signal decreases with an increase in
stress [80]. Mandal showed that the circumferential bending stress changes the magnetic
easy axis of the pipe and thus reduces the MFL signal [81]. Y. Wang also studied the
stress-dependent MFL signals in Q235 steel plates [82]. Timoshenko’s theory and the J-A
model were combined to calculate the stress-dependent distribution of magnetization, then
a modified magnetic dipole model considering the stress dependence was proposed. With
the proposed model, Wang showed that the MFL signal increases with the increase in
stress in the Q235 steel plate. Gao also observed a similar effect in the testing of steel wire
ropes [83]. Later, Shi showed that the change in the MFL signal behaves differently in the
elastic and plastic deformation stage [84].

For the testing of micro-cracks, the influences of surface roughness cannot be ignored.
Deng considered the rough surface as concave and convex defects and showed that a rough
surface introduces background noise to the MFL signal and reduces the signal-to-noise
ratio (SNR) [92]. Yang also studied the effect of surface roughness on the SNR of MFL
signals and proposed the use of a magnetic medium to improve the SNR [93]. In another
study, B.P.C. Rao proposed the use of an Eigen vector-based approach to suppress the noise
caused by non-linear permeability, surface roughness, stresses, and liftoff variations in MFL
images [94]. Since the surface roughness influences the MFL signal, the MFL signal can be
used in turn to represent the surface roughness. Li proposed to use the MFL signal and its
spatial Fourier spectrum to measure surface roughness [95].

4. Excitation and Sensing Techniques in MFL Testing
4.1. Excitation Methods
4.1.1. Structures of Magnetizer

In conventional MFL testing, the excitation field is provided by either permanent
magnets or direct current (DC) carrying coils. The main advantages of using permanent
magnets include: (1) the magnetizer has a relatively small size and light weight; (2) there is
no need for an external power supply. Due to these features, magnet-based magnetizers are
especially suitable for use in portable devices and inspection robots for the inspection of
wire ropes and transmission pipelines. The drawback of using permanent magnets is that
the installation is not convenient due to the large magnetic force between the magnet and
the specimen, and the magnetization strength is difficult to adjust. These drawbacks can
be overcome using coils. The magnetization strength can be easily adjusted by changing
the current in the coil and the current can be turned off during the installation. The
distribution of the magnetic field generated by magnetizing coils can be calculated through



Materials 2022, 15, 7362

10 of 22

magnetic vector potentials [96], and a uniform magnetizing field can be achieved by the
design of Helmholtz coils [97]. However, coil-based magnetizers usually have larger sizes;
thus, they have limitations in some applications. With either a permanent magnet or
coil, a ferromagnetic yoke can be used to formulate magnetic circuits with less magnetic
reluctance to increase the magnetization inside the specimens.

The encircling coil-based magnetizer has the advantage of providing a strong and
adjustable magnetizing field; however, wires are closed, making it difficult for certain
specimens such as wire ropes and coiled tubing to be inserted into the middle of the coil.
To solve this problem, Y. Sun proposed an opening electromagnetic transducer, as shown in
Figure 11, which facilitates the insertion of specimens [98,99]. S. Wang proposed a flexible
magnetizer-based parallel cable that may have potential applications in specimens with
complex curvature [100].

Copper coil

Opening mouth

Figure 11. The structure of the opening electromagnetic transducer.

For the yoke type magnetizer, Y. Chang did several optimizations for the yoke shape,
yoke size and thickness of shielding layer with the help of finite element simulation [101].
J. Parra-Raad performed a multi-object optimization for pipeline inspection gauge (PIG)
by the genetic algorithm [102]. The conventional yoke type magnetizer only generates a
magnetic field in one direction and has limited sensitivity for cracks that are parallel to
the magnetic field. A double U-shaped orthogonal magnetizer, as shown in Figure 12, can
be used to overcome this problem, although it was originally developed for alternating
current field measurement (ACFM) [103]. When AC excitation is used in the MFL testing,
the direction of the magnetizing field can be adjusted by controlling the phase difference
between the two yokes.

LT LT

X

Figure 12. The structure of double U-shaped orthogonal magnetizer.
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4.1.2. Excitation Signal Waveforms

To extract more defect information in MFL testing, researchers have considered the
optimization of the excitation signal waveform. Alternating current magnetic flux leakage
(ACMFL), pulsed magnetic flux leakage (PMFL), and MFL-based combined AC and DC
excitation have been proposed. Y. Gotoh conducted a comprehensive study on ACMFL,
analyzed ACMFL with finite element simulation, stated the necessity of using nonlinear
analysis, and used the method to detect plural cracks [104,105]. Due to the skin effect, the
magnetic field concentrates on the surface of the specimen, thus the surface can be saturated
with a relatively small excitation current. Gotoh also used low-frequency AC excitation
to increase the penetration depth and detected outer side cracks in a steel plate 3 mm
thick [106,107]. Hayashi proposed an unsaturated ACMFL testing method for reinforcing
steel bars and achieved defect inspection at high liftoff of up to 100 mm [108].

To increase the depth of penetration and obtain richer information, A. Sophian and G.Y.
Tian proposed the PMFL method, in which a square waveform is applied as the excitation
signal [109]. It was found that the PMFL method has advantages in defect location and
sizing. J. Wilson combined the PMFL method with pulsed magnetic reluctance (PMR),
which provided a complementary approach for the integrated inspection of surface and sub-
surface cracks [110]. Subsequently, many researchers have studied the signal characteristics
and extracted features for defect quantification and discrimination of internal and external
defects [111-114].

The combined DC and AC excitation has also been used in MFL testing. D. Wu
proposed a magnetizer with both permanent magnets and coils excited with alternating cur-
rent [115]. The AC excitation was used to generate eddy currents that were perpendicular
to the DC magnetic field to cover the blind zone of the DCMFL. R. Wang proposed to use
two encircling coils to, respectively, generate DC and AC magnetizing fields [116], in which
the DC field is used to set the working point by changing the permeability and the AC field
is used to obtain the defect information. The results showed that this method can be used
to increase the detectability of internal defects. Y. Gotoh also studied the combinational use
of DC and AC excitation and took into account the minor hysteresis loop in the detection
of far-side defects [117].

4.2. Sensing Methods

After generating a leakage field with appropriate excitation, sensing is the vital step
to pick up the leakage field. Various types of magnetic field sensors that can convert the
magnitude of a magnetic field into the corresponding voltage have been used in MFL
testing. The most commonly used sensors are the Hall element and coils. Hall element
is able to measure the absolute value of the magnetic field; however, when the sensor is
near the poles of the magnetizer, it may operate outside the linear range. Coils have a
wider measurement range; however, they only measure the rate of change in the magnetic
field instead of its absolute value. In recent studies, magnetic field sensors with higher
sensitivities have been used in MFL testing for the detection of tiny cracks. Kataoka and
Singh used a giant magnetoresistance (GMR) line sensor and flexible GMR sensor array
in MFL [118,119]. Tehranchi used a double-core giant magneto-impedance (GMI) sensor
in the testing of steel plates [120]. Z. Jin used a tunnel magnetoresistance (TMR) sensor
for the inspection of steel bars [121]. Kallias and Krause discussed the potential of using a
superconducting quantum interference device (SQUID) in nondestructive testing [122,123].

In addition to using new sensing elements, researchers have also tried to enhance the
MFL signal by the design of a probe structure. G. Park and Y. Jia both considered adding a
ferromagnetic backing near the sensor to enhance the MFL signal [124,125]. ]. Wu proposed
to use a magnetic head (as shown in Figure 13) to detect tiny cracks in bearings [126], J.
Tang further studied the influence of head pose on the MFL signal [127]. E. Li studied the
relationship between the size of the opening in the magnetic head and the frequency of the
MFL signal and designed a magnetic head structure for trans-scale defects [128,129]. S. Liu
proposed a magnetic focusing sensor that adds a magnetic guide core and a permanent
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magnet to coils [130]. D. Wu proposed to use two sensors to measure the change rate of
magnetic flux leakage to reduce background and vibration noises [131]. J. Tang proposed to
use a ferromagnetic material with grooves to replace the conventional non-ferromagnetic
liftoff layer to increase the MFL signal [132]. T. Nara designed a Fourier coil consisting of
two coils of radial offset [133]. The sensor is able to obtain the Fourier coefficients of the
leakage magnetic flux and locate the center of the crack.

Induction coil

\-

Magnetic
core
; L]
Specimen g Defect 5o

Figure 13. The structure of magnetic head.

Magnetic sensors are the most commonly used sensing methods in MFL testing;
however, the results are not intuitive, and it requires additional signal processing circuits
and display modules. J. Philip and V. Mahendran have proposed the use of a ferrofluid
emulsion film to visualize the leakage magnetic field [134-136]. The uniformly distributed
particles re-distribute under the leakage magnetic field and exhibit different colors due to
Bragg scattering of the droplets. J. Lee also proposed a method to visualize the leakage
magnetic field using magneto-optical film (MOF) [137]. According to the magneto-optical
effect, a polarized light rotates when it is transmitted through an MOF with an external
field, and the rotated angle is proportional to the external field. Thus, the MOF can be
used to observe the leakage magnetic field. M. Tehranchi added a detector behind the
magneto-optical sensor to capture the light and recorded the change in the magnetic field
in a computer [138].

The development of the sensing method in MFL is mainly dedicated to the inspection
of micro-cracks, especially the cracks in high-precision mechanical parts such as bearing
and bearing roller. Researchers have optimized the sensing probe from the aspects of
using highly sensitive sensors such as TMR and designing new types of structures such as
magnetic heads [126,128]. In E. Li’s paper, it is reported that the smallest crack that can be
detected is with a depth of 7 um.

5. Inverse Problem in MFL and Defect Quantification

The ultimate goal of non-destructive testing can be classified into three levels. At
the basic level, we need to determine whether there are defects in the specimen based on
the testing signals. Furthermore, the defect size needs to be quantified to determine the
severity of the damage. Ultimately, the defect size information will be used to predict the
remaining life of the structures. After decades of development, qualitative determination
of the existence of a defect is relatively simple. Thus, a lot of effort has been put into the
study of the quantification of defects, which is a classical inverse problem.

5.1. Machine Learning-Based Defect Quantification

Machine learning has undergone rapid development in recent years, especially in
the branches of artificial neural networks (ANN) and deep learning. Machine learning
techniques showed great success in tasks such as classification and regression. The task of
defect quantification is essentially a problem of classification or regression; thus, artificial
neural networks have been widely used in defect quantification in MFL testing. The
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neural networks can be regarded as a function that maps the inputs (raw signal or features
extracted from the signal) to the outputs (defect type, defect size, etc.). To train a neural
network, experiments and simulations should be conducted for defects of various sizes.
The defect sizes and corresponding signals (or signal features) are fed into the network to
update the weights.

Initially, due to the limited performance of computers, shallow neural networks with
one or two hidden layers were used. Carvalho used raw MFL signals and signals after
filtering as the input to the neural network, and classified signals into defects and non-
defects with an accuracy of 94.2% [139]. He also used the neural network to classify the
defects into external corrosion, internal corrosion, and lack of penetration with an accuracy
of 71.7%. K. Hwang employed the wavelet basis function (WBF) neural network to the MFL
signal to a three-dimensional defect profile [140]. The WBF provides a multi-resolution
approximation and overcomes some disadvantages of the radial basis function neural
network. Khodayari-Rostamabad introduced various machine learning techniques and
feature selection methods and estimated the defect depth with an error of less than 8% [141].
Kandroodi used the MFL signal contour to determine the defect length and width and used
the signal peak-to-peak values along with the estimated length and width to estimate the
defect depth [142].

With the increase in computer performance, deep neural networks that require massive
computational resources have been applied in many industrial fields. The additional layers
in the deep neural network can be regarded as feature extractors. Applying deep neural
networks avoids manual feature extraction, a process that highly depends on the experience
of the researcher and the engineer. J. Feng applied a convolutional neural network (CNN)
to classify injurious and noninjurious defects based on MFL images and showed that CNN
gave more accurate predictions than neural networks, support vector machines, decision
trees, and correlation-based methods [143]. S. Lu proposed a visual transformation CNN
for defect quantification and improved the accuracy of estimation for length, width, and
depth by 26.9%, 27.1%, and 33.3% [144]. Z. Wu used reinforcement learning to replace the
classic iteration process and successfully reconstructed complex defect depth profiles [145].
H. Sun stated that taking into account the physical concepts in the deep neural network
would be better than only using general neural networks [146]. He integrated the MFL
theory into the loss function and proposed a physics-informed doubly fed cross-residual
network that estimated the defect length, width, and depth accurately [146].

5.2. Iteration-Based Defect Quantification

Prior to the application of machine learning-based methods, iteration-based methods
have been widely used in defect quantification [147-159]. The basic concept of iteration
methods is shown in Figure 14, where the defect quantification is regarded as an opti-
mization problem that minimizes the difference between the experimentally measured
MFL signal and the one calculated with the estimated defect profile. To begin the defect
quantification process, an initial estimate of the defect profile is required. Then, a forward
MFL model is used to calculate the MFL signal generated by the defect profile. Usually,
there are types of forward models that can be used, namely the magnetic dipole model,
finite element model, and neural network model. After the calculation with the forward
model, a comparison is made between the calculated MFL signal and the one obtained in
the experiment. If the error is less than a desirable value, the profile will be regarded as
the final estimation, otherwise, the error is used to update the defect profile and repeat the
process of forward calculation.

Since defect quantification is regarded as an optimization problem, many optimization
algorithms can be used to update the defect profiles. More conventionally, the gradient
descent algorithm is used [160-162]. Later, genetic algorithms [162], particle swarm opti-
mization [163-165], and cuckoo search [166,167] have been applied to quantify defects in
MFL testing.
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Figure 14. The iterative process for defect quantification in MFL testing.

6. Applications and Comparison with Related NDT Methods
6.1. Applications of MFL Testing

As an efficient nondestructive testing method for ferromagnetic materials, MFL test-
ing has been successfully applied in many industrial fields. One of the most important
applications is underground pipeline inspection, where the so-called pipeline inspection
gauge (PIG) is used. The PIG usually has permanent magnets as the magnetizing units,
ferromagnetic yokes to connect the magnets and form a magnetic circuit, and brushes to
separate the magnetizer and pipes.

Another important application is the inspection of steel pipes during manufacturing.
According to the API standard, the steel pipes must be tested before leaving the factory.
Among the testing methods, the MFL is the most commonly used. Typical MFL equipment
for seamless steel pipe is shown in Figure 15a. It consists of three modules, two of which
are for the inspection of transverse and longitudinal cracks and a demagnetizing module
to demagnetize the pipe after inspection. For the inspection of transverse cracks, encircling
coils have been used to generate axial magnetic fields in steel pipes. For the inspection
of longitudinal cracks, magnetizers with two shoes that are 180° away from each other
are used to generate magnetic fields in the circumferential direction. In the oil industry,
MFL has also been applied in the inspection of drill pipes and sucker rods as shown in
Figure 15b,c.

()
Figure 15. Applications of MFL: (a) seamless steel pipe; (b) drill pipe; (c) sucker rod; (d) bearing.
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In the automobile industry, bearings were previously tested by the method of magnetic
particle inspection (MPI). MPI has good sensitivity for tiny cracks; however, the inspection
result is dependent on the analysis of the inspector. With the usage of highly sensitive
sensors, MFL can also achieve the detection of tiny cracks. In addition, MFL has the
advantage of automatic inspection; thus, it is replacing MPI in several fields, such as the
inspection of bearing, as shown in Figure 15d.

In industrial applications, usually, an array of magnetic sensors is used to cover
the whole area of the specimen. There are two common ways to display and visualize
multi-channel signals. The most typical way is to display the signals one by one in the
time domain as shown in Figure 16a. With the rapid development of image processing
technology, especially deep learning techniques such as CNN, displaying the MFL testing
results as gray-scale images (Figure 16b) would facilitate the application of corresponding
algorithms to extract defect information.

(a) (b)

Figure 16. Visualizing MFL testing signals: (a) multi-channel time-domain signals; (b) gray-scale
images.

6.2. Comparison with Related NDT Methods

MEFL technique belongs to the category of electromagnetic NDT. Within this category,
there are other methods such as eddy current testing (ECT), magnetic particle inspection
(MPI), metal memory method (MMM), magnetic Barkhausen noise (MBN) method, perma-
nent perturbation (PMP) method, magnetic adaptive testing (MAT) method, and magnetic
permeability perturbation (MPP) method. The advantage of MFL over MPI is the easiness
of implementing automatic testing; however, at the same time, it has lower sensitivity than
MPI. When compared with ECT, MFL has better detection ability for deeply buried defects,
whereas it has lower sensitivity for surface defects.

The comparison between MFL and newly proposed electromagnetic NDT methods
has been discussed in some previous publications. G. Vértesy applied MFL, MMM, and
MAT to detect an artificial slot in stacked steel plates, he found that the MFL gave good
results when there are one or two layers and MAT outperformed MFL when there were
more layers [168]. Z. Deng compared MFL with MPP and found that MPP can detect
defects that are buried deeper than MFL [169]. Y. Sun compared MFL with PMP and stated
that the PMP method can accomplish inspection in a narrower operation space and is more
suitable for omni-directional cracks [170,171].

7. Conclusions

In this paper, a comprehensive review of the MFL technology has been presented.
Firstly, the principle of MFL testing has been explained with the theory of refracted magnetic
field and an analytical expression for the leakage magnetic field has been derived based
on the 3D magnetic dipole model. Then, the influence of some crucial factors, such as
defect size, defect orientation, liftoff distance, magnetization strength, testing speed, surface
roughness, and stress, on the MFL testing signal has been analyzed.

Excitation and sensing are the most important steps in MFL testing, in which excitation
decides if there is a leakage field generated, and sensing decides if the generated field can



Materials 2022, 15, 7362 16 of 22

be effectively detected. In this paper, the development of magnetizer structures and the
usage of different excitation signal waveforms have been introduced.

In the quantification of defects, there are mainly two types of algorithms, namely the
machine learning-based algorithm and the iteration-based algorithm. Both algorithms
achieved relatively good accuracy on defect quantification. The machine learning-based
algorithm usually requires a large training set, and the iteration-based algorithm usually
requires large computational resources during the iteration process.

With the advantages of high efficiency, low cost, and environmental friendliness, MFL
has been applied in many applications such as underground pipelines, seamless steel piles,
drill pipes, sucker rods, and bearings.
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